A solution to the Subbarao relation

Chris Nash

Abstract

In [1], Subbarao notes that the relation $n \cdot \sigma(n)=2 \bmod \phi(n)$ holds for prime values of n, and also for $n=4,6,22$. The existence of other composite solutions was not known. In a closely-related problem in [3], Carlos Rivera and J ud McCranie posed questions about the function $\mathrm{z}(\mathrm{n})=$ $\phi(\mathrm{n})+\sigma(\mathrm{n})-2 \mathrm{n}$. A solution to the Rivera/McCranie problem is presented, then the Subbarao question is completely solved using properties of this function $\mathrm{z}(\mathrm{n})$.

1 Definitions

We define the function $\mathrm{z}(\mathrm{n})$ on positive integers n by

$$
\begin{equation*}
\mathrm{z}(\mathrm{n})=\quad=\quad \phi(\mathrm{n})+\sigma(\mathrm{n})-2 \mathrm{n} \tag{1}
\end{equation*}
$$

2 Solution of Carlos Rivera's Puzzle 76

$\mathrm{Z}(\mathrm{n}) \geq 0$, with equality only holding if $\mathrm{n}=1$ or n is prime.
We first note the following relations which follow directly from the definitions of $\phi(\mathrm{n})$ and $\sigma(\mathrm{n})$:

$$
\begin{array}{rll}
\sigma(\mathrm{n}) & = & \\
\mathrm{n}= & \sum_{\mathrm{d} \mid \mathrm{n}} \mathrm{~d} \tag{3}\\
& & \\
& \sum_{\mathrm{d} \mid \mathrm{n}} \phi(\mathrm{~d})
\end{array}
$$

By applying the Möbius inversion formula to (그) we have

$$
\begin{equation*}
\phi(\mathrm{n})=\quad \sum_{\mathrm{d} \mid \mathrm{n}} \mu(\mathrm{n} / \mathrm{d}) \cdot \mathrm{d} \tag{4}
\end{equation*}
$$

We note both (2) and (4) include a term for $\mathrm{d}=\mathrm{n}$ that evaluates to n , and so we have the formula

$$
\begin{aligned}
\mathrm{z}(\mathrm{n}) & =(\phi(\mathrm{n})-\mathrm{n})+(\sigma(\mathrm{n})-\mathrm{n}) \\
& =\mathrm{d}<\mathrm{n} \mu(\mathrm{n} / \mathrm{d}) \cdot \mathrm{d}+\sum_{\mathrm{d} \mid \mathrm{n}} \mathrm{~d} \\
& =\sum_{\mathrm{n}}
\end{aligned}
$$

$$
\begin{equation*}
=\quad \sum_{\mathrm{d} \mid \mathrm{n}}^{\mathrm{d}<\mathrm{n}}(\mu(\mathrm{n} / \mathrm{d})+1) \cdot \mathrm{d} \tag{5}
\end{equation*}
$$

Since each term in (5) is non-negative we conclude $z(n) \geq 0$. For equality to hold, either the sum must be empty, or each term must equal zero. An empty sum only occurs in the case $\mathrm{n}=1$, otherwise we require

$$
\begin{equation*}
\mu(\mathrm{n} / \mathrm{d})=-1 \forall \mathrm{~d} \mid \mathrm{n}, \mathrm{~d}<\mathrm{n} \tag{6}
\end{equation*}
$$

In particular, this means n cannot have two or more distinct prime factors. If n had distinct prime factors p and q , choose $\mathrm{d}=\mathrm{n} / \mathrm{pq}$ and we have a contradiction with (6). Hence n must be a power of a prime.

Similarly, if $\mathrm{n}=\mathrm{p}^{\mathrm{r}}$ for some $\mathrm{r}>1$, choose $\mathrm{d}=1$ and again we have a contradiction with (6).
Finally it is easy to demonstrate that, if n is prime, $\phi(\mathrm{n})=\mathrm{n}-1$ and $\sigma(\mathrm{n})=\mathrm{n}+1$.
Hence $\mathrm{z}(\mathrm{n})=0$ if and only if $\mathrm{n}=1$, or n is prime.

3 The Subbarao relation

The Subbarao relation

$$
\begin{equation*}
\mathrm{n} \cdot \sigma(\mathrm{n})=2 \bmod \phi(\mathrm{n}) \tag{7}
\end{equation*}
$$

has no composite solutions except for $n=4,6,22$.
We have, from (1),

$$
\sigma(\mathrm{n})=\quad 2 \mathrm{n}+\mathrm{z}(\mathrm{n}) \bmod \phi(\mathrm{n})
$$

and thus

$$
\mathrm{n} \cdot \sigma(\mathrm{n})=\mathrm{n}(2 \mathrm{n}+\mathrm{z}(\mathrm{n})) \bmod \phi(\mathrm{n})
$$

Let us assume n is composite and (7) is true. Then

$$
\begin{equation*}
2 \mathrm{n}^{2}+\mathrm{nz}(\mathrm{n})-\mathrm{k} \phi(\mathrm{n})=2, \tag{8}
\end{equation*}
$$

for some integer k . The proof now proceeds by cases.

Case I: If n has a repeated prime factor p^{r} for somer >1, then $\mathrm{p}^{\mathrm{r}-1}$ divides the left side of (8). Hence p^{r-1} must divide 2, so p must be 2 , and r must be 2 . $n=4$ is a known solution. If $n=$ 4 m for some odd integer $\mathrm{m}>1$, some prime factor of m will contribute an additional factor 2 to $\phi(\mathrm{n})$, so the left-hand side is divisible by 4 while the right-hand side is not, a contradiction.

Case II: Suppose nown $=2$ p for some odd prime p. We note that $\mathrm{z}(\mathrm{n})=2$, and considering ($\mathbf{8}$) modulo ($\mathrm{p}-1$) gives

$$
2 \cdot 2^{2}+2 \cdot 2=2 \bmod (p-1) .
$$

Hence ($p-1$) divides 10 , producing the solutions $p=3$ and $p=11$, corrsponding to the known
composite solutions $\mathrm{n}=6$ and $\mathrm{n}=22$.

Case III: Suppose now $\mathrm{n}=2 \mathrm{~m}$ for some odd composite number m with no repeated factor. We note that in ($\mathbf{5}$), none of the μ terms can be zero, hence every term in the sum is even.
Furthermore each prime factor of n contributes at least one factor 2 to $\phi(n)$. Hence 4 divides every term on the left-hand side of (8), a contradiction, and there are no solutions n of this form.

Case IV: Finally assume n is a product of distinct odd primes. As above, we see $\mathrm{z}(\mathrm{n})$ is even, but now show that $\mathrm{z}(\mathrm{n})$ is not divisible by 4 . Let us define $\mathrm{f}(\mathrm{x})$ as the number of prime factors of x. Then (5) becomes

$$
\begin{equation*}
\mathrm{z}(\mathrm{n}) / 2=\sum_{\mathrm{d} \mid \mathrm{n}, \mathrm{f}(\mathrm{n} / \mathrm{d}) \text { is even }}^{\mathrm{d}<\mathrm{n}} \mathrm{~d} \tag{9}
\end{equation*}
$$

We note every term in the sum in (9) is odd. We also note the number of terms in this sum is

$$
\sum_{r=1}^{2 \mathrm{r}<=\mathrm{f}(\mathrm{n})}\binom{\mathrm{f}(\mathrm{n})}{2 \mathrm{r}}=2^{\mathrm{f}(\mathrm{n})-1} 1
$$

each choice of $2 r$ factors denoting all combinations of factors of n / d. Since $f(n)>1$ in this case, we note the number of terms is therefore odd, hence $\mathrm{z}(\mathrm{n}) / 2$ is an odd number. As before each prime factor of n contributes a factor of 2 to $\phi(n)$. Since n is also odd, we have

$$
\begin{aligned}
2 \mathrm{n}^{2} & = & 2 \bmod 4, \\
\mathrm{nz}(\mathrm{n}) & = & 2 \bmod 4, \\
\phi(\mathrm{n}) & = & 0 \bmod 4
\end{aligned}
$$

and the left-hand side of ($\underline{8}$) is again divisible by 4 , a contradiction and thus there are no solutions n of this form.

It is immediately verified the Subbarao relation holds for all primes. Summarizing, the only composite numbers satisfying the Subbarao relation are $\mathrm{n}=4,6,22$.

References

[1]
Richard K. Guy, '`Unsolved Problems In Number Theory", B37, p.92. (Springer-Verlag, New York, 1994). [2] E.Bach; J .Shallit: ``Algorithmic Number Theory". (Foundation of Computer Science Series, MIT Press, 1996). [3] C. Rivera, J. McCranie: ` `Puzzle 76. z(n)=sigma(n)+phi(n)-2n", http://www.sci.net.mx/ ~crivera/ puzzles/ puzz_076.htm

File translated from TEX by TTTㅂ, version 2.60. On 21 Dec 1999, 13:29.

